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Abstract

The analysis of a periodic array of cracks in an infinite strip under surface heating is investigated. The thermal
stresses are generated as a result of a ramp function change on the boundary. Due to surface heating, compressive
transient thermal stresses occur close to the surface causing the crack surfaces to come into contact at a certain contact
length. The problem is treated as a nonlinear contact crack problem with the smooth closure condition of the crack
surfaces. The mixed boundary value problem is reduced to a hypersingular integral equation with the crack surface
displacement as an unknown function and the crack contact length as an additional unknown variable. Numerical
results for stress intensity factors and the crack contact length are obtained as a function of time, heating rate, crack
length, and periodic crack spacing.
© 2004 Published by Elsevier Ltd.
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1. Introduction

Many researchers have been concerned with the study of an elastic plate under thermal loading especially
in the presence of preexisting cracks since it exists in many engineering applications such as aircraft, turbine
engines, and power plants. The single crack problem in a finite width and a semi-infinite plate under
thermal stresses has been investigated (see, for example, Nied, 1983, 1987; Rizk and Radwan, 1992; Rizk,
1993a). Some studies of multiple cracks in a plate under thermal loading are considered in the literature.
Bahr et al. (1988) studied an array of parallel and equally spaced edge cracks in a long strip due to
quenching using the boundary element method. Multiple crack problems in the functionally graded
materials under thermal loading are examined by Wang et al. (2000). The problem of a periodic array of
cracks in a half-plane subjected to convective cooling is considered by Rizk (2003).

In this paper the study of a periodic array of edge cracks perpendicular to the boundaries in an elastic
infinite plate subjected to surface heating is considered. When the surface of the plate is heated, compressive
stresses are generated near the plate surface forcing the crack surface to come into contact along a certain
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contact length. The computation of the stress intensity factors that does not take into account the crack
contact length will lead to negative results. Nevertheless, if the crack contact length is considered in the
analysis, the crack is cusp shaped and the smooth closure condition of the crack surfaces can be used
leading to positive stress intensity factors at the crack tip. The crack contact length is therefore an addi-
tional unknown variable, which must be introduced into the formulation of the crack problem. So, the
problem of interest would be a nonlinear contact problem, which is treated as an embedded crack problem
with a smooth closure condition that must be solved iteratively.

In the analysis, it is assumed that the material is linear isotropic homogenous, whilst the thermoelastic
coupling effects and the temperature dependence of the thermoelastic coefficients are negligible. The tran-
sient thermal stress problem may be treated as a quasi-static, that is, inertia effects are negligible. Previous
studies on dynamic thermoelasticity seem to justify this assumption (Sternberg and Chakravorty, 1959a,b).

Since the material is linear, the principle of superposition can be used to solve the problem. The stress
state in the strip may be considered as the sum of two solutions. The first is to obtain the transient thermal
stresses in the strip without cracks. The second is to solve the isothermal cracked problem (the perturbation
problem) by using the thermal stresses obtained from the first with an opposite sign on the crack surfaces as
the only external loads. The superposition of the two solutions gives the results for the thermal stress
problem for the cracked medium. Because our interest is in the stress intensity factor, it is sufficient to
consider the perturbation problem only. It is important to note that the presence of the cracks that are
normal to the face of the strip does not perturb the one-dimensional transient temperature and thermal
stress distribution, which are in x direction. By expressing the displacement components in terms of finite
and infinite Fourier transforms (Schulze and Erdogan, 1998), and defining a new function in terms of the
crack surface displacement, we end up with a hypersingular integral equation which is solved numerically
using the expansion method and the concept of the finite-part integral developed by Kaya and Erdogan
(1987). Numerical calculations for stress intensity factors are obtained as a function of normalized quan-
tities such as time, heating rate, crack length, and periodic crack spacing.

2. Mathematical formulation

Consider an elastic strip of thickness /# with an infinite array of edge cracks at a distance 2¢ as shown in
Fig. 1a. Assume the medium is initially at a constant temperature 7,,, and at ¢ = 0 the surface x =0 is
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Fig. 1. (a) Geometry of periodic cracks, (b) ramp function on the boundary.
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heated gradually to Ty by a ramp function shown in Fig. 1b while the boundary x = 4 is insulated. It is clear
that the heating rate is decreases as ¢, increases. The most rapidly heating rate of change occurs when ¢, = 0
that is corresponding to a unit step function change. Since the solution of the temperature distribution as
well as the transient thermal stresses are independent of whether the surface is heated or cooled, the
transient thermal stresses for the uncracked problem that are needed to formulate the cracked medium can
be obtained from Rizk (1993a,b). For a unit step function (7o = 0)
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where E is the Young’s modulus, v is the Poisson’s ratio, « is the coefficient of linear thermal expansion and
D is the thermal diffusivity. Also x* = x/h, 19 = tyD/h*, t = tD/h* (Fourier number), and 4, = n/2(2n — 1)
are dimensionless parameters. Referring to Fig. 1a, the plane elasticity problem requires the solution of the
following equilibrium equations:
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where k = (3 — 4v) is valid for plane strain and k = (3 — v)/(1 + v) for plane stress, and u, v are the x and y
components of the displacement vector. Because of periodicity, the problem was considered for 0 < y < ¢
and subjected to the following homogenous boundary conditions:

0yy(x,0) =0, oy(x,¢) =0, v(x,c) =0, O0<x<h (6)
0x(0,9) =0,  04(0,») =0,  ou(hy)=0,  0oy(hy)=0, 0<y<c (™)
and the mixed boundary condition

v(x,0)=0, 0<x<a, b<x<h, JW(x,O):—a}T,y(x,t), a<x<bhb (8)
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where a;(i,j = x,y) are the stresses and ¢, (x,?) is the thermal stress from the uncracked problem. The
solution of the differential equations (4) and (5) can be obtained by assuming the displacement components
in terms of sums of finite and infinite Fourier transforms (Schulze and Erdogan, 1998) in the form

00 1 00 o

u(x,y) = nzzo:f(x, ocn)cosanerﬂ [mp( P dp 9)
< . 1 > ixp

() = Doglna)sinuy - [ gl e ap (10)

n=1

where o, = nn/c. By a substitution of Egs. (9) and (10) into the Egs. (4) and (5) it can be shown that the
displacement components u, v have the following form
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where C;(i = 1,2,3,4) are functions of o, and D;(i = 1,2, 3,4) are functions of . Seven of the unknown
functions C;(a,), D:(f), (i =1,...,4) can be eliminated by using the homogenous boundary conditions (6)
and (7). The remaining one would then be given by the mixed boundary condition (8). By defining a new
function as

¢(x) = v(x,0) (13)

all the unknown functions can be expressed in terms of ¢(x). After a lengthy but straightforward analy-
sis the problem will be reduced into the following integral equation with ¢(x) as the unknown function
ie.

b
iy [ K1 .8) + Kalrs)os) ds == T (14)

where u is the shear modulus, and the kernels K; and K, are given by
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where H; (i =1,2,3,4), M are given by
H le—Zanhﬂ
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By separating the singular terms from K; and K, we may have
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where &5 (x,s) and &5, (x, s) are the standard generalized singular terms at a = 0 and b = A respectively, that
are given by
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The kernel &/ (x,s) is bounded as (s — x) — 0 and it is in the form
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whereas, the kernel k;(x,s) is bounded as the crack approaches the free boundaries (¢ = 0 and b = ). So,
the integral equation (14) may be expressed as

n(k+1) ¢
™ a,,(x,1) (27)
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Using the function theoretic method developed by Muskhelishvili (1953), and the finite part-integral de-
scribed by Kaya and Erdogan (1987), the unknown function ¢(s) may be expressed as:

¢(s) = f(s)(s —a)" (b —s)" (28)

where f'(s) is a continuous function in the interval a <s < b, f(a) # 0, f(b) # 0, and y,, y, are depending on
the location of the crack tip. If the crack is imbedded (a > 0, b < &) then y, =y, = 1/2, but for an edge
crack (a=0,b<h)y,=0,y,=1/2and for (a>0,b=h)y, =1/2,y,=0.
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In the case of mode I, the stress intensity factor at the end points ¢ and b is defined by

K(a) = lim v/2(a = x),(x,0) = K‘:f - lim ’;((); g)a) (29)
K(b) = lim /2(x = B)ayy (x,0) = K‘Z‘l lim l;(); (i)x) (30)

where o0,,(x, 0) is the stress outside the crack. Following Muskhelishvili (1953), the stress intensity factor for
an impeded crack at a and b are given by

K(@) = (a5 a1
K() = (b)) 5 (32)

In order to analyze the crack contact problem properly, the contact length, &, in the compressive zone has to
be considered as an additional unknown variable. The contact length may be calculated by using the
smooth closure condition of the crack surface at x =a which is assured by the condition K(a) =0
(Bakioglu et al., 1976). So, the problem may be formulated as an impeded crack by fixing the crack length
at x = b and then determining by iteration the location of the crack tip x = a at each time step so that
the condition K(a) = 0 is satisfied.

3. Numerical technique

The numerical solution of Eq. (27) can be obtained by reducing it into a system of algebraic equations
(Kaya and Erdogan, 1987). First, it is expressed in terms of the following normalized quantities

b—a b+a b—a b+a
x=— r+ 7 5= p+ 3 (33)
b—g\ltn ) 2
10=(252)" Fo ks = (52 ) e (34)
giving
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where o) = Eo(Ty — T.,)/(1 — v). Assume the solution is in the form of a finite series as
N
Flp) = ap" (36)
n=0

where a, are (N + 1) unknown coefficients to be determined. By substituting Eq. (36) into Eq. (35) we end
up with (N + 1) linear equations that are solved at certain collocation points. The zeros of Chebychev
polynomials of the order (N + 1) are used as collocation points which are symmetrically distributed with
respect to the origin and concentrated near the end points, i.e.

n(2j—1)

v :C()Sm7

j=12,...,N+1 (37)
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Finally the linear system of equations may be in the form
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The numerical integration techniques that are used are developed in Kaya and Erdogan (1987).
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Fig. 2. Normalized thermal stresses a;, (x*,7)/a} for (a) unit step function 7y = 0, (b) ramp function 75 = 0.1.
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4. Results and conclusion

Sample results of the thermal stresses o (x*,7)/0, are shown in Fig. 2. Fig. 2a is related to a unit step
change at the boundary (Eq. (1)), while Fig. 2b is related to a ramp function change on the surface (Egs. (2)
and (3)). It is clear that as the heating rate decreases (7, increases) the transient thermal stresses decrease
consequently.

The influence of the normalized crack spacing b/2c on the normalized stress intensity factors defined by
K(b)/ag+/b is shown in Fig. 3 as a function of the normalized time (Fourier number) t = tD/h* for two
values of the normalized crack length b/h = 0.2,0.4 and two values of the duration ramp 7y = 0.0 and 0.1.
Fig. 3a corresponds to the unit step function change 7o = 0.0, while Fig. 3b corresponds to a ramp function
change 79 = 0.1. It can be seen that as normalized crack spacing increases (¢ decreases) the normalized
stress intensity factors decrease. Thus, the maximum value of the normalized transient stress intensity
factors will occur for a single crack (¢ — oo). Also by increasing the duration ramp 7, (heating rate
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Fig. 3. Normalized stress intensity factor K(b)/o'g\/l; for b/h = 0.2,0.4. (a) Unit step function 7y = 0.0, (b) ramp function 75 = 0.1.
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decreasing) the normalized stress intensity factors decrease. For all cases the normalized stress intensity
factor increases as a function of time to a maximum value and then decreases rapidly for all values of b/2¢
and 7. Fig. 4 demonstrate the normalized crack contact length ¢/b versus the normalized time t = tD/h’
for different values of b/2¢, 1y and b/h. Fig. 4a and b are illustrated for 7o = 0.0 and 0.1 respectively. It is
obvious that as the normalized crack spacing increases (¢ decreasing), the crack contact length will increase.
It should be noted that the location of the contact point at x = a which satisfies the condition K (a) = 0 does
not coincide with the point where the thermal stresses in the uncracked strip change sign. The contact point
is located closer to the free surface x = a than the zero in the stress field. For example, with% =0.4,1=0.0,
i = 1.0 and © = 0.005,0.01,0.05,0.1, the contact lengths relative to 4 are ; = 0.093,0.118,0.179,0.1985,
while the zero of the thermal stresses is located at 5 = 0.115,0.145,0.205,0.215.

The effect of the crack length b/h on the normalized stress intensity factors versus the normalized time
is shown in Fig. 5 for two values of 7o = 0.0,0.1, and two values of /2¢ = 0.1,0.5. Fig. 5a and b are
depicted for b/2¢ = 0.1 and b/2¢ = 0.5 respectively. As the crack length increases the maximum value of

-
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Fig. 4. Normalized crack contact length ¢/b for b/h = 0.2,0.4. (a) Unit step function 7o = 0.0, (b) ramp function 7o = 0.1.
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Fig. 5. Normalized stress intensity factor K (b)/at /b for different values of normalized crack length b/h. (a) b/2c = 0.1, (b) b/2¢ = 0.5.

the normalized stress intensity factor is increases until a certain value of the crack length and then decreases
for both cases b/2¢ = 0.1,0.5. The influence of the heating rate measured by 7, and the normalized crack
spacing b/2c¢ is also observed in the same figure. The normalized crack contact length /b is plotted against
the normalized time for different values of the crack length b/h, two values of 7o = 0.0,0.1, and two values
of b/2¢ = 0.1,0.5; that is given in Fig. 6. Fig. 6a and b are related to »/2¢ = 0.1 and 0.5 respectively. It is
apparent that, for the short crack 5/h = 0.2, a complete crack closure over the entire length of the crack will
occur. It is also clear that the normalized time needed to reach the maximum value of the normalized
contact length increases as 7 increases. Obviously, the smallest magnitude of the normalized stress intensity
factors will occur as the normalized periodic crack spacing b/2c increases (¢ decreases).

In conclusion, the periodic crack spacing seems to be an important factor on the normalized stress
intensity factors. As the distance between the crack spacing decreases, the magnitude of the normalized
stress intensity factor will be reduced, and the normalized crack contact length would be increased due to
the interaction between the cracks. Also, more realistic temperature change on the boundary (ramp
function) gives more realistic results than the unit step function resulting in reducing the normalized stress
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Fig. 6. Normalized crack contact length ¢/b for different values of normalized crack length b/h. (a) b/2¢ = 0.1, (b) b/2¢ = 0.5.

intensity factors. The maximum magnitude of the normalized stress intensity factors starts to increase as the
normalized crack length increases until a certain value and then it decreases.
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