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Abstract

The analysis of a periodic array of cracks in an infinite strip under surface heating is investigated. The thermal

stresses are generated as a result of a ramp function change on the boundary. Due to surface heating, compressive

transient thermal stresses occur close to the surface causing the crack surfaces to come into contact at a certain contact

length. The problem is treated as a nonlinear contact crack problem with the smooth closure condition of the crack

surfaces. The mixed boundary value problem is reduced to a hypersingular integral equation with the crack surface

displacement as an unknown function and the crack contact length as an additional unknown variable. Numerical

results for stress intensity factors and the crack contact length are obtained as a function of time, heating rate, crack

length, and periodic crack spacing.

� 2004 Published by Elsevier Ltd.
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1. Introduction

Many researchers have been concerned with the study of an elastic plate under thermal loading especially

in the presence of preexisting cracks since it exists in many engineering applications such as aircraft, turbine

engines, and power plants. The single crack problem in a finite width and a semi-infinite plate under

thermal stresses has been investigated (see, for example, Nied, 1983, 1987; Rizk and Radwan, 1992; Rizk,

1993a). Some studies of multiple cracks in a plate under thermal loading are considered in the literature.
Bahr et al. (1988) studied an array of parallel and equally spaced edge cracks in a long strip due to

quenching using the boundary element method. Multiple crack problems in the functionally graded

materials under thermal loading are examined by Wang et al. (2000). The problem of a periodic array of

cracks in a half-plane subjected to convective cooling is considered by Rizk (2003).

In this paper the study of a periodic array of edge cracks perpendicular to the boundaries in an elastic

infinite plate subjected to surface heating is considered. When the surface of the plate is heated, compressive

stresses are generated near the plate surface forcing the crack surface to come into contact along a certain
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contact length. The computation of the stress intensity factors that does not take into account the crack

contact length will lead to negative results. Nevertheless, if the crack contact length is considered in the

analysis, the crack is cusp shaped and the smooth closure condition of the crack surfaces can be used

leading to positive stress intensity factors at the crack tip. The crack contact length is therefore an addi-
tional unknown variable, which must be introduced into the formulation of the crack problem. So, the

problem of interest would be a nonlinear contact problem, which is treated as an embedded crack problem

with a smooth closure condition that must be solved iteratively.

In the analysis, it is assumed that the material is linear isotropic homogenous, whilst the thermoelastic

coupling effects and the temperature dependence of the thermoelastic coefficients are negligible. The tran-

sient thermal stress problem may be treated as a quasi-static, that is, inertia effects are negligible. Previous

studies on dynamic thermoelasticity seem to justify this assumption (Sternberg and Chakravorty, 1959a,b).

Since the material is linear, the principle of superposition can be used to solve the problem. The stress
state in the strip may be considered as the sum of two solutions. The first is to obtain the transient thermal

stresses in the strip without cracks. The second is to solve the isothermal cracked problem (the perturbation

problem) by using the thermal stresses obtained from the first with an opposite sign on the crack surfaces as

the only external loads. The superposition of the two solutions gives the results for the thermal stress

problem for the cracked medium. Because our interest is in the stress intensity factor, it is sufficient to

consider the perturbation problem only. It is important to note that the presence of the cracks that are

normal to the face of the strip does not perturb the one-dimensional transient temperature and thermal

stress distribution, which are in x direction. By expressing the displacement components in terms of finite
and infinite Fourier transforms (Schulze and Erdogan, 1998), and defining a new function in terms of the

crack surface displacement, we end up with a hypersingular integral equation which is solved numerically

using the expansion method and the concept of the finite-part integral developed by Kaya and Erdogan

(1987). Numerical calculations for stress intensity factors are obtained as a function of normalized quan-

tities such as time, heating rate, crack length, and periodic crack spacing.
2. Mathematical formulation

Consider an elastic strip of thickness h with an infinite array of edge cracks at a distance 2c as shown in
Fig. 1a. Assume the medium is initially at a constant temperature T1, and at t ¼ 0 the surface x ¼ 0 is
y

o

∝

T

a c2

b x

T

ot t

h

(a) (b) 

Fig. 1. (a) Geometry of periodic cracks, (b) ramp function on the boundary.
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heated gradually to T0 by a ramp function shown in Fig. 1b while the boundary x ¼ h is insulated. It is clear
that the heating rate is decreases as t0 increases. The most rapidly heating rate of change occurs when t0 ¼ 0

that is corresponding to a unit step function change. Since the solution of the temperature distribution as

well as the transient thermal stresses are independent of whether the surface is heated or cooled, the
transient thermal stresses for the uncracked problem that are needed to formulate the cracked medium can

be obtained from Rizk (1993a,b). For a unit step function ðs0 ¼ 0Þ
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and for a ramp function ðs0 > 0Þ
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where E is the Young’s modulus, t is the Poisson’s ratio, a is the coefficient of linear thermal expansion and

D is the thermal diffusivity. Also x� ¼ x=h, s0 ¼ t0D=h2, s ¼ tD=h2 (Fourier number), and kn ¼ p=2ð2n� 1Þ
are dimensionless parameters. Referring to Fig. 1a, the plane elasticity problem requires the solution of the

following equilibrium equations:
ðj � 1Þr2uþ 2
o2u
ox2

�
þ o2v
oxoy

�
¼ 0 ð4Þ

ðj � 1Þr2vþ 2
o2u
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�
þ o2v
oy2

�
¼ 0 ð5Þ
where j ¼ ð3� 4tÞ is valid for plane strain and j ¼ ð3� tÞ=ð1þ tÞ for plane stress, and u, v are the x and y
components of the displacement vector. Because of periodicity, the problem was considered for 0 < y < c
and subjected to the following homogenous boundary conditions:
rxyðx; 0Þ ¼ 0; rxyðx; cÞ ¼ 0; vðx; cÞ ¼ 0; 0 < x < h ð6Þ

rxxð0; yÞ ¼ 0; rxyð0; yÞ ¼ 0; rxxðh; yÞ ¼ 0; rxyðh; yÞ ¼ 0; 0 < y < c ð7Þ

and the mixed boundary condition
vðx; 0Þ ¼ 0; 0 < x < a; b < x < h; ryyðx; 0Þ ¼ �rT
yyðx; tÞ; a < x < b ð8Þ
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where rijði; j ¼ x; yÞ are the stresses and rT
yyðx; tÞ is the thermal stress from the uncracked problem. The

solution of the differential equations (4) and (5) can be obtained by assuming the displacement components

in terms of sums of finite and infinite Fourier transforms (Schulze and Erdogan, 1998) in the form
uðx; yÞ ¼
X1
n¼0

f ðx; anÞ cos any þ
1

2p

Z 1

�1
pðy; bÞeixb db ð9Þ
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where an ¼ pn=c. By a substitution of Eqs. (9) and (10) into the Eqs. (4) and (5) it can be shown that the

displacement components u, v have the following form
uðx; yÞ ¼
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where Ciði ¼ 1; 2; 3; 4Þ are functions of an and Diði ¼ 1; 2; 3; 4Þ are functions of b. Seven of the unknown

functions CiðanÞ, DiðbÞ; ði ¼ 1; . . . ; 4Þ can be eliminated by using the homogenous boundary conditions (6)

and (7). The remaining one would then be given by the mixed boundary condition (8). By defining a new

function as
uðxÞ ¼ vðx; 0Þ ð13Þ
all the unknown functions can be expressed in terms of uðxÞ. After a lengthy but straightforward analy-

sis the problem will be reduced into the following integral equation with uðxÞ as the unknown function

i.e.
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Z b

a
½K1ðx; y; sÞ þ K2ðx; y; sÞ
uðsÞds ¼ � pðj þ 1Þ

4l
rT
yyðx; tÞ ð14Þ
where l is the shear modulus, and the kernels K1 and K2 are given by
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where Hi ði ¼ 1; 2; 3; 4Þ, M are given by
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By separating the singular terms from K1 and K2 we may have
lim
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where ks2aðx; sÞ and ks2bðx; sÞ are the standard generalized singular terms at a ¼ 0 and b ¼ h respectively, that

are given by
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The kernel kf1 ðx; sÞ is bounded as ðs� xÞ ! 0 and it is in the form
kf1 ðx; sÞ ¼
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whereas, the kernel kf2 ðx; sÞ is bounded as the crack approaches the free boundaries (a ¼ 0 and b ¼ h). So,
the integral equation (14) may be expressed as
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Using the function theoretic method developed by Muskhelishvili (1953), and the finite part-integral de-

scribed by Kaya and Erdogan (1987), the unknown function uðsÞ may be expressed as:
uðsÞ ¼ f ðsÞðs� aÞc1ðb� sÞc2 ð28Þ
where f ðsÞ is a continuous function in the interval a6 s6 b, f ðaÞ 6¼ 0, f ðbÞ 6¼ 0, and c1, c2 are depending on
the location of the crack tip. If the crack is imbedded (a > 0, b < h) then c1 ¼ c2 ¼ 1=2, but for an edge

crack (a ¼ 0, b < h) c1 ¼ 0, c2 ¼ 1=2 and for (a > 0, b ¼ h) c1 ¼ 1=2, c2 ¼ 0.
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In the case of mode I, the stress intensity factor at the end points a and b is defined by
KðaÞ ¼ lim
x!a
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where ryyðx; 0Þ is the stress outside the crack. Following Muskhelishvili (1953), the stress intensity factor for

an impeded crack at a and b are given by
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In order to analyze the crack contact problem properly, the contact length, e, in the compressive zone has to

be considered as an additional unknown variable. The contact length may be calculated by using the

smooth closure condition of the crack surface at x ¼ a which is assured by the condition KðaÞ ¼ 0

(Bakioglu et al., 1976). So, the problem may be formulated as an impeded crack by fixing the crack length
at x ¼ b and then determining by iteration the location of the crack tip x ¼ a at each time step so that

the condition KðaÞ ¼ 0 is satisfied.
3. Numerical technique

The numerical solution of Eq. (27) can be obtained by reducing it into a system of algebraic equations

(Kaya and Erdogan, 1987). First, it is expressed in terms of the following normalized quantities
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where rT
0 ¼ EaðT0 � T1Þ=ð1� tÞ. Assume the solution is in the form of a finite series as
F ðqÞ ¼
XN
n¼0

anqn ð36Þ
where an are ðN þ 1Þ unknown coefficients to be determined. By substituting Eq. (36) into Eq. (35) we end

up with ðN þ 1Þ linear equations that are solved at certain collocation points. The zeros of Chebychev

polynomials of the order ðN þ 1Þ are used as collocation points which are symmetrically distributed with

respect to the origin and concentrated near the end points, i.e.
rj ¼ cos
pð2j� 1Þ
2ðN þ 1Þ ; j ¼ 1; 2; . . . ;N þ 1 ð37Þ
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Finally the linear system of equations may be in the form
XN
n¼0

anEnðrjÞ ¼ �p
rTðrj; tÞ
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0

; j ¼ 1; 2; 3; . . . ;N þ 1 ð38Þ
where
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The numerical integration techniques that are used are developed in Kaya and Erdogan (1987).
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0 for (a) unit step function s0 ¼ 0, (b) ramp function s0 ¼ 0:1.
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4. Results and conclusion

Sample results of the thermal stresses rT
yyðx�; sÞ=rT

0 are shown in Fig. 2. Fig. 2a is related to a unit step

change at the boundary (Eq. (1)), while Fig. 2b is related to a ramp function change on the surface (Eqs. (2)
and (3)). It is clear that as the heating rate decreases (s0 increases) the transient thermal stresses decrease

consequently.

The influence of the normalized crack spacing b=2c on the normalized stress intensity factors defined by

KðbÞ=rT
0

ffiffiffi
b

p
is shown in Fig. 3 as a function of the normalized time (Fourier number) s ¼ tD=h2 for two

values of the normalized crack length b=h ¼ 0:2; 0:4 and two values of the duration ramp s0 ¼ 0:0 and 0.1.

Fig. 3a corresponds to the unit step function change s0 ¼ 0:0, while Fig. 3b corresponds to a ramp function

change s0 ¼ 0:1. It can be seen that as normalized crack spacing increases (c decreases) the normalized

stress intensity factors decrease. Thus, the maximum value of the normalized transient stress intensity
factors will occur for a single crack ðc ! 1Þ. Also by increasing the duration ramp s0 (heating rate
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decreasing) the normalized stress intensity factors decrease. For all cases the normalized stress intensity

factor increases as a function of time to a maximum value and then decreases rapidly for all values of b=2c
and s0. Fig. 4 demonstrate the normalized crack contact length e=b versus the normalized time s ¼ tD=h2

for different values of b=2c, s0 and b=h. Fig. 4a and b are illustrated for s0 ¼ 0:0 and 0.1 respectively. It is
obvious that as the normalized crack spacing increases (c decreasing), the crack contact length will increase.

It should be noted that the location of the contact point at x ¼ a which satisfies the condition KðaÞ ¼ 0 does

not coincide with the point where the thermal stresses in the uncracked strip change sign. The contact point

is located closer to the free surface x ¼ a than the zero in the stress field. For example, with b
h ¼ 0:4, s0 ¼ 0:0,

b
2c ¼ 1:0 and s ¼ 0:005; 0:01; 0:05; 0:1, the contact lengths relative to h are e

h ¼ 0:093; 0:118; 0:179; 0:1985,
while the zero of the thermal stresses is located at x

h ¼ 0:115; 0:145; 0:205; 0:215.
The effect of the crack length b=h on the normalized stress intensity factors versus the normalized time

is shown in Fig. 5 for two values of s0 ¼ 0:0; 0:1, and two values of b=2c ¼ 0:1; 0:5. Fig. 5a and b are
depicted for b=2c ¼ 0:1 and b=2c ¼ 0:5 respectively. As the crack length increases the maximum value of
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Fig. 4. Normalized crack contact length e=b for b=h ¼ 0:2; 0:4. (a) Unit step function s0 ¼ 0:0, (b) ramp function s0 ¼ 0:1.
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the normalized stress intensity factor is increases until a certain value of the crack length and then decreases
for both cases b=2c ¼ 0:1; 0:5. The influence of the heating rate measured by s0 and the normalized crack

spacing b=2c is also observed in the same figure. The normalized crack contact length e=b is plotted against

the normalized time for different values of the crack length b=h, two values of s0 ¼ 0:0; 0:1, and two values

of b=2c ¼ 0:1; 0:5; that is given in Fig. 6. Fig. 6a and b are related to b=2c ¼ 0:1 and 0.5 respectively. It is

apparent that, for the short crack b=h ¼ 0:2, a complete crack closure over the entire length of the crack will

occur. It is also clear that the normalized time needed to reach the maximum value of the normalized

contact length increases as s0 increases. Obviously, the smallest magnitude of the normalized stress intensity

factors will occur as the normalized periodic crack spacing b=2c increases (c decreases).
In conclusion, the periodic crack spacing seems to be an important factor on the normalized stress

intensity factors. As the distance between the crack spacing decreases, the magnitude of the normalized

stress intensity factor will be reduced, and the normalized crack contact length would be increased due to

the interaction between the cracks. Also, more realistic temperature change on the boundary (ramp

function) gives more realistic results than the unit step function resulting in reducing the normalized stress
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Fig. 6. Normalized crack contact length e=b for different values of normalized crack length b=h. (a) b=2c ¼ 0:1, (b) b=2c ¼ 0:5.

A.E.-F.A. Rizk / International Journal of Solids and Structures 41 (2004) 4685–4696 4695
intensity factors. The maximum magnitude of the normalized stress intensity factors starts to increase as the

normalized crack length increases until a certain value and then it decreases.
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